Problem 1.6

Prove that

$$
[\mathbf{A} \times(\mathbf{B} \times \mathbf{C})]+[\mathbf{B} \times(\mathbf{C} \times \mathbf{A})]+[\mathbf{C} \times(\mathbf{A} \times \mathbf{B})]=\mathbf{0} .
$$

Under what conditions does $\mathbf{A} \times(\mathbf{B} \times \mathbf{C})=(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}$?

Solution

Use the BAC-CAB rule to simplify each of the expressions in square brackets.

$$
\begin{aligned}
& {[\mathbf{A} \times(\mathbf{B} \times \mathbf{C})]+[\mathbf{B} \times(\mathbf{C} \times \mathbf{A})]+[\mathbf{C} \times(\mathbf{A} \times \mathbf{B})]=[\mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B})] } \\
&+[\mathbf{C}(\mathbf{B} \cdot \mathbf{A})-\mathbf{A}(\mathbf{B} \cdot \mathbf{C})] \\
&+[\mathbf{A}(\mathbf{C} \cdot \mathbf{B})-\mathbf{B}(\mathbf{C} \cdot \mathbf{A})]
\end{aligned}
$$

Use the fact that the dot product is commutative.

$$
\begin{aligned}
& {[\mathbf{A} \times(\mathbf{B} \times \mathbf{C})]+[\mathbf{B} \times(\mathbf{C} \times \mathbf{A})]+[\mathbf{C} \times(\mathbf{A} \times \mathbf{B})]=\underline{\mathbf{B}(\mathbf{A} \cdot \mathbf{C})}-\mathbf{C}(\mathbf{A} \cdot \mathbf{B}) } \\
&+\mathbf{C}(\mathbf{A} \cdot \mathbf{B})-\mathbf{A}(\mathbf{B} \cdot \mathbf{C}) \\
&+\mathbf{A}(\mathbf{B} \cdot \mathbf{C})-\mathbf{B}(\mathbf{A} \cdot \mathbf{C})
\end{aligned}
$$

Therefore,

$$
[\mathbf{A} \times(\mathbf{B} \times \mathbf{C})]+[\mathbf{B} \times(\mathbf{C} \times \mathbf{A})]+[\mathbf{C} \times(\mathbf{A} \times \mathbf{B})]=\mathbf{0} .
$$

Bring $\mathbf{C} \times(\mathbf{A} \times \mathbf{B})$ to the right side.

$$
[\mathbf{A} \times(\mathbf{B} \times \mathbf{C})]+[\mathbf{B} \times(\mathbf{C} \times \mathbf{A})]=-[\mathbf{C} \times(\mathbf{A} \times \mathbf{B})]
$$

Use the minus sign to switch the order.

$$
[\mathbf{A} \times(\mathbf{B} \times \mathbf{C})]+[\mathbf{B} \times(\mathbf{C} \times \mathbf{A})]=[(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}]
$$

We see that $\mathbf{A} \times(\mathbf{B} \times \mathbf{C})=(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}$ if and only if $\mathbf{B} \times(\mathbf{C} \times \mathbf{A})=\mathbf{0}$, that is, if one of the following conditions is satisfied.

1. \mathbf{B} is perpendicular to \mathbf{A} and $\mathbf{C}: \mathbf{B} \cdot \mathbf{A}=0$ and $\mathbf{B} \cdot \mathbf{C}=0$.
2. \mathbf{A} and \mathbf{C} are parallel: $\mathbf{C}=\lambda \mathbf{A}$, where λ is a real constant.
3. \mathbf{A}, \mathbf{B}, or \mathbf{C} are the zero vector: $\mathbf{A}=\mathbf{0}$ or $\mathbf{B}=\mathbf{0}$ or $\mathbf{C}=\mathbf{0}$.
